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Abstract

A key ingredient of computational argumentation in AI is the
generation of arguments in favor of or against claims under
scrutiny. In this paper we look at the complexity of argument
construction and reasoning in the prominent structured for-
malism of assumption-based argumentation (ABA). We point
out that reasoning in ABA by means of constructing an ab-
stract argumentation framework (AF) gives rise to two main
sources of complexity: (i) constructing the AF and (ii) rea-
soning within the constructed graph. Since both steps are in-
tractable in general, it is no surprise that the best performing
state-of-the-art ABA reasoners skip the instantiation proce-
dure entirely and perform tasks directly on the input knowl-
edge base. Driven by this observation, we identify and study
atomic and symmetric ABA, two ABA fragments that pre-
serve the expressive power of general ABA, and that can be
utilized to have milder complexity in the first or second step.
We show that using atomic ABA allows for an instantiation
procedure for general ABA leading to polynomially-bounded
AFs and that symmetric ABA can be used to create AFs that
have mild complexity to reason on. By an experimental eval-
uation, we show that using the former approach with mod-
ern AF solvers can be competitive with state-of-the-art ABA
solvers, improving on previous AF instantiation approaches
that are hindered by intractable argument construction.

1 Introduction
Computational models of argumentation are a central ap-
proach within non-monotonic reasoning (Baroni et al. 2018)
with a variety of applications (Atkinson et al. 2017) in, e.g.,
legal or medical reasoning. Key to many approaches to
computational argumentation are so-called structured argu-
mentation formalisms which specify a formal argumentative
workflow. Among the prominent approaches in the field
are assumption-based argumentation (ABA) (Bondarenko et
al. 1997; Čyras et al. 2018), ASPIC+ (Modgil and Prakken
2013), defeasible logic programming (DeLP) (Garcı́a and
Simari 2004), and deductive argumentation (Besnard and
Hunter 2008). Reasoning within these formalisms is often
carried out by instantiating argument structures and conflicts
among these arguments from (rule-based) knowledge bases
in a principled manner. The resulting arguments and con-
flicts are referred to as abstract argumentation frameworks
(AFs) (Dung 1995). Argumentation semantics then define

argumentative acceptability on an AF such that conclusions
can be drawn for the original knowledge base.

In the present paper, we focus on ABA which is well stud-
ied and has applications in, e.g., decision making (Craven et
al. 2012; Čyras et al. 2021; Fan et al. 2014). In an ABA
framework (ABAF) argumentative reasoning can be carried
out by instantiating arguments as derivations in the given
rule base and attacks between arguments based on contraries
among the derivations.

There are multiple reasons for studying the AF obtained
from a given knowledge base. From a technical point of
view, there is an abundance of research concerned with AFs
which can be applied to assess the instantiated AF, see, e.g.,
the Handbook of Formal Argumentation (Baroni et al. 2018)
for an overview. Thus, many typical research questions can
be answered out of the box after converting the knowledge
base. Moreover, since AFs are directed graphs, they are ac-
cessible and user-friendly; information on the relations be-
tween arguments that is implicit in the knowledge base is
made explicit and clear within the graphical framework.

Nevertheless, the instantiation procedure comes with
computational costs and consequently state-of-the-art ABA
systems reason on the knowledge base directly instead
of constructing the arguments (Lehtonen, Wallner, and
Järvisalo 2021a; Lehtonen, Wallner, and Järvisalo 2021b).
Indeed, many structured argumentation formalisms, includ-
ing ABA, suffer from the drawback that the knowledge
base gives rise to exponentially many (or even an infinite
number of) arguments (Amgoud, Besnard, and Vesic 2014;
Lehtonen, Wallner, and Järvisalo 2017; Strass, Wyner, and
Diller 2019; Yun, Oren, and Croitoru 2020). On the other
hand, this implies that the instantiated AF makes informa-
tion within the knowledge base explicit, i.e., certain reason-
ing steps are performed during the AF construction.

The computational cost of the instantiation procedure can
be divided into two steps: (1) the AF construction and (2)
reasoning on the resulting AF, as illustrated in Figure 1.
Since virtually all argumentative reasoning on ABA is NP-
hard (Dimopoulos, Nebel, and Toni 2002), it is immedi-
ate that there is no hope for having both steps tractable in
general. However, it turns out that in the standard instan-
tiation procedure for ABA, both steps are intractable: the
AF can be exponentially-sized and reasoning on the result-
ing AF can be NP-hard, thereby paying the computational
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Figure 1: Sources for complexity in the instantiation procedure: (1)
construction of the AF FD; (2) reasoning in the AF FD .

cost twice for the overall NP-hard reasoning tasks. This
holds for instance for the prominent NP-complete prob-
lem of credulous acceptance under admissibility. Such an
approach is a barrier, e.g., for utilizing AF solvers even
if they are successful for AFs (Thimm and Villata 2017;
Gaggl et al. 2020), since they have to operate on large AFs.

In this paper, we delve into the issue of the computational
cost of the instantiation process and discuss a complexity
trade-off: we show that we can confine the complexity to ei-
ther step (1) or to step (2), with the other step being tractable.
Based on two ABA fragments which we call atomic and
symmetric ABA, we identify two approaches to achieve this:

1. by translating a general ABAF into an atomic ABAF, the
size of the resulting AF is bounded, and

2. by translating a general ABAF into a symmetric ABAF,
reasoning in the resulting AF is tractable.

We also empirically evaluate the first approach in practice,
namely translating a general ABAF into an atomic ABAF,
instantiating an AF from the atomic ABAF, and using
the state-of-the-art AF solver MU-TOKSIA (Niskanen and
Järvisalo 2020) to reason on the AF. We found that our novel
approach is competitive, on instances with limited cyclic de-
pendencies in rules, with the currently best performing ABA
system, which directly works on the ABAF without instan-
tiation (Lehtonen, Wallner, and Järvisalo 2021a). Our ap-
proach outperforms previous approaches to ABA reasoning
that are based on instantiating an AF. In addition to founda-
tional insights into the instantiation procedure, our approach
thus also paves the way for modern AF solvers to compete
with solvers that work without an instantiation procedure.

The main contributions of the paper is as follows.

• We first take care of instantiations into infinite AFs, and
operate on the technical vehicle of cores of ABAFs, which
serve as foundation for showing our results.

• We show that every ABAF can be translated to an
atomic one so that the resulting instantiation leads to a
polynomially-sized AF (w.r.t. the original ABAF).

• We present an approach that contains the complexity
solely in the AF instantiation, by translating a general
ABAF into a symmetric ABAF.

• We implement an approach that translates general ABAFs
into atomic ABAFs and utilizes the state-of-the-art AF
solver MU-TOKSIA (Niskanen and Järvisalo 2020). We
compare our approach with the state of the art.

A preliminary version of this work was presented at the
Non-Monotonic Reasoning workshop in 2022 (Rapberger,
Ulbricht, and Wallner 2022). For proofs not contained in the

paper and for the implementation we refer the reader to the
supplementary material1.

2 Background
We recall preliminaries for assumption-based argumentation
(ABA) (Čyras et al. 2018; Bondarenko et al. 1997) and ab-
stract argumentation frameworks (AFs) (Dung 1995).

Assumption-based Argumentation The first ingredient
of ABA is a deductive system (L,R), with L a formal lan-
guage and R a set of inference rules over L. In this work
we assume that L is a set of atoms. A rule r ∈ R is of
the form a0 ← a1, . . . , an with ai ∈ L. For such a rule
we let head(r) = a0, and body(r) = {a1, . . . , an}. An
ABA framework (ABAF) contains a deductive system and
specifies which atoms are assumptions and what are their
contraries.
Definition 1. An ABAF is a tuple D = (L,R,A, ), where
(L,R) is a deductive system, A ⊆ L a non-empty set of
assumptions, and a function mapping assumptions a ∈ A
to atoms s ∈ L (the contrary function).

We extend the contrary function to sets: S = {x | x ∈
S}. In this work, we focus on ABAFs which are flat, i.e., no
assumption can be derived: we require for each rule r ∈ R
that head(r) /∈ A holds. Moreover, we assume that ABA
frameworks are finite (L, R, and body(r) for each r ∈ R
are finite), and that each rule is stated explicitly, i.e., each
rule is ground and does not contain any variables.

Arguments in an ABA framework (L,R,A, ) are based
on proof trees. We refer to arguments based directly on proof
trees as “tree-based arguments”, because we will in later sec-
tions consider a different representation of arguments due to
our computational purposes. In brief, a tree-based argument
represents a derivation using rules in R to derive a claim s
starting from a set of assumptions S ⊆ A.
Definition 2. Let D = (L,R,A, ) be an ABAF. A tree-
based argument t based on D is a finite labeled rooted tree
where i) the root is labeled with some atom s ∈ L, ii) each
leaf is labeled by an assumption a ∈ A or a dedicated
symbol ⊤ /∈ L, and iii) each internal node is labeled with
head(r) of a rule r ∈ R s.t. the set of labels of children of
this node is equal to body(r) or ⊤ if the body is empty.

Note that if a ∈ A, then the tree t consisting of a single
node labeled with a is also a tree-based argument.

For a tree-based argument t we write leaves(t) to denote
the set of assumptions labeling the leaves; cl(t) to denote
the claim (or conclusion) of t, i.e., the label of the root; and
rules(t) to denote the set of rules required to construct t. We
remark that there can be multiple tree-based arguments with
the same set of assumptions and rules, and the same claim.
Remark 3. Tree-based arguments are commonly denoted
as derivations S ⊢R p where S = leaves(t), R = rules(t),
and p = cl(t). We will encounter a similar argument rep-
resentation later on (we call them core arguments, cf. Sec-
tion 4). To clearly distinguish both notions, we denote tree-
based arguments with Latin letters (e.g.,t, u, or v).

1https://bitbucket.org/lehtonen/acbar

https://bitbucket.org/lehtonen/acbar


For S ⊆ A, we define derivability in ABA via
ThD(S) = {cl(t) | t tree-based argument, leaves(t) ⊆ S}.
That is, ThD(S) contains all atoms that can be derived (via
tree-based arguments) using assumptions in S. We omit the
subscript D if clear from the context.

We now recall conflicts, admissible sets, and subsequently
the remaining semantics. A set A of assumptions attacks a
set B of assumptions if it is possible to derive the contrary
of some assumption in B from A.
Definition 4. Let D = (L,R,A, ) be an ABAF and
A,B ⊆ A be two sets of assumptions. Assumption set A
attacks assumption set B in D if b ∈ Th(A) for some b ∈ B.

This yields notions of conflict-freeness and defense.
Definition 5. Let D = (L,R,A, ) be an ABAF. An as-
sumption set A ⊆ A is conflict-free in D, A ∈ cf (D), iff A
does not attack itself; A defends assumption set B ⊆ A in
D iff for all C ⊆ A that attack B it holds that A attacks C.

Now we are ready to define the standard semantics.
Definition 6. Let D = (L,R,A, ) be an ABAF and let
A ∈ cf (D). Then the set A is
• admissible, A ∈ adm(D), iff A defends itself;
• complete, A ∈ com(D), iff A is admissible and contains

every assumption set defended by A;
• preferred, A ∈ prf (D), iff A is admissible and there is no

admissible set of assumptions B with A ⊂ B;
• stable, A ∈ stb(D), iff A attacks each {x} ⊆ A \A.

An atom s is credulously accepted under σ in an ABAF
D iff there is a σ-assumption-set E s.t. s ∈ ThD(E).
Example 7. Consider the ABAF D = (L,R,A, ) where

L = {c1, c2, ϕ} ∪ A,
A = {x1, x

′
1, x2, x

′
2} with xi = x′

i, x
′
i = xi,

moreover, the rulesR of the given ABA are
c1 ← x1; c1 ← x′

2; c2 ← x′
1;

c2 ← x2; ϕ← c1, c2.

It holds that each A ⊆ A is admissible whenever {xi, x
′
i} ̸⊆

A for i ∈ {1, 2} (no “complementary literals”). Moreover,
the literal ϕ is credulously accepted under admissibility,
since, e.g., {x1, x2} is admissible and ϕ ∈ Th({x1, x2}).

Semantics of ABA frameworks can be alternatively de-
fined in terms of arguments and attacks.

Abstract Argumentation An abstract argumentation
framework (AF) (Dung 1995) is a directed graph F =
(A,R) where A represents a set of arguments and R ⊆ A×A
models attacks between them. For two arguments x, y s.t.
(x, y) ∈ R we say x attacks y. A set E ⊆ A attacks an
argument x if there is some y ∈ E that attacks x. Set E is
conflict-free in F iff for no x, y ∈ E, (x, y) ∈ R; E defends
an argument x if E attacks each attacker of x. A conflict-
free set E is admissible in F (E ∈ adm(F )) iff it defends
all its elements. A semantics is a function F 7→ σ(F ) ⊆ 2A;
each E ∈ σ(F ) is called a σ-extension. Here we consider
so-called complete, preferred, and stable semantics (abbr.
com , prf , and stb).

Definition 8. Let F = (A,R) be an AF and E ∈ adm(F ).
Then E ∈ com(F ) iff E contains all arguments it defends;
E ∈ prf (F ) iff E is ⊆-maximal in com(F ); E ∈ stb(F ) iff
E attacks each argument x ∈ A \ E.

For a given AF (A,R) and x ∈ A, it holds that x is cred-
ulously accepted in F w.r.t. a semantics σ iff there is a σ-
extension E containing x.

Instantiation ABA semantics can be alternatively defined
by constructing a suitable AF.
Definition 9. Let D = (L,R,A, ) be an ABAF and let t
and v be two tree-based arguments based on D. We say that
t attacks v iff cl(t) ∈ leaves(v).

Collecting all tree-based arguments and attacks based on
D results in the AF FD corresponding to the given ABAF.
Definition 10. Let D = (L,R,A, ) be an ABAF. The pair
FD = (A,R) is called the AF corresponding to D if A is the
set of all tree-based arguments based on D, and R is the set
of all attacks based on D.

Claims of tree-based arguments are collected via cl(E) =
{cl(t) | t ∈ E} for a set E of tree-based arguments, and
assumptions via asms(E) =

⋃
t∈E leaves(t). We recall

the relation between ABAFs and AFs (see, e.g., Čyras et
al., 2018, Theorem 4.3).
Proposition 11. Let D be an ABAF, FD the associated AF,
and σ ∈ {adm, com, prf , stb}. If A ∈ σ(D), then
{t | leaves(t) ⊆ A, t is a tree-based argument} ∈ σ(FD).

If E ∈ σ(FD), then asms(E) ∈ σ(D).
To clearly distinguish semantics, we say that A ⊆ A is

an assumption set under semantics σ (or a σ-assumption-
extension) and that a set of tree-based arguments E is an
extension under semantics σ (or σ-extension for short).

We remark that credulous acceptance of tree-based argu-
ments in a given AF can be directly generalized to ask for
acceptance of claims s of tree-based arguments, i.e., ask-
ing whether there is some σ-extension containing some tree-
based argument t with claim s.

Complexity results for reasoning in ABA and AFs
were established (see, e.g., the chapter by Dvořák and
Dunne (2018) for an overview) when the corresponding
structure is given (in particular for AFs the full AF is given
as input). For both assumption sets and extensions, deciding
credulous acceptance under admissible, preferred, complete,
and stable semantics is NP-complete.

3 Complexity Trade-Offs
Let us delve into the computational machinery underlying
the instantiation procedure. We identify two sources of com-
plexity when reasoning in ABA via instantiating an AF.

1. Construction of the AF corresponding to the ABAF.
2. The computational complexity of reasoning in the AF.
We illustrate this in Figure 1. Since reasoning in ABA is
NP-hard, it is clear that both steps in (1) and (2) can not be
performed together in polynomial time. However, according
to the original definition of ABA, neither of these steps is
tractable. Let us now inspect both points in detail.
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Figure 2: AF instantiation of the ABA framework from Reduc-
tion 14 for the formula ϕ = (¬x1∨x2∨¬x3)∧(¬x2∨x3∨¬x3).

Size of the constructed AF. Let us start with the first step.
It is folklore that the corresponding AF to an ABAF is infi-
nite in general. We say that an AF F = (A,R) is infinite
if A is infinite. An AF F is finitary (Dung 1995) if it holds
that each argument t ∈ A is attacked by a finite number of
arguments (but the overall number of arguments may still be
infinite). It is not hard to construct an ABAF s.t. the induced
AF FD becomes infinite.
Example 12. Let D = (L,R,A, ) be an ABA framework
with A = {a, b}, L = {x, y} ∪ A, four rules (x ← a),
(x ← x), (y ← y), and (y ← b), and a = y and b = x.
There are infinitely many tree-based arguments based on D
(via chaining rules arbitrary many times), and all arguments
with claim x are attacked by all tree-based arguments con-
cluding y (of which there are infinitely many).

This leads to the simple observation stated next.
Observation 13. Given an ABA framework, the correspond-
ing AF can be infinite and non-finitary.

This observation implies that step (1) in Figure 1 is in
general not just exponential, but even infinite.

Reasoning in the Constructed AF. Now suppose we are
given FD. Is it now the case that reasoning in FD is easy,
because all the computational effort was done due to con-
structing FD? Unfortunately, the answer is negative. Even
with FD given, it is still NP-hard (in the size of FD) to de-
cide the standard reasoning tasks.

To demonstrate this, let us consider the following (direct)
reduction from SAT.
Reduction 14. Let ϕ be a Boolean formula in CNF over
clauses C and variables X . Let X ′ = {x′ | x ∈ X} and
C ′ = {c′ | c ∈ C}. We construct D = (L,R,A, ) with
• L = X ∪X ′ ∪ C ∪ C ′ ∪ {ϕ},
• A = X ∪X ′ ∪ C,
• x = x′ and x′ = x for each x ∈ X , and c = c′ for each
c ∈ C, and

• let the set of rules be composed of ϕ ← C, as well as
c′ ← {l′ | l ∈ c} ∪ {l | ¬l ∈ c} for each c ∈ C.

An example of this reduction is depicted in Figure 2.
The corresponding ABAF FD can be constructed in poly-

nomial time; indeed, it can be checked that the AF FD

contains 2 · (|X| + |C|) + 1 many tree-based arguments.

Moreover, the resulting AF corresponds to the standard
translation for AFs (Dvořák and Dunne 2018, Reduction
3.6) (including further auxiliary arguments corresponding
to the assumptions c ∈ C). As discussed by Dvořák and
Dunne (2018), the formula ϕ is satisfiable iff the argument t
with claim ϕ is acceptable w.r.t. each of the semantics con-
sidered in this paper. We arrive at the following observation.

Observation 15. Credulous reasoning under semantics σ ∈
{adm, com, prf , stb} in AFs is NP-complete in the class of
(finite) AFs stemming from instantiating an ABAF.

We therefore conclude that step (2) is also intractable.

Outline. We set out to consider all aspects raised in this
section: (i) unbounded number of arguments (Section 4),
(ii) intractability in the AF construction step (Section 5), and
(iii) intractability in the reasoning step (Section 6).

4 Argument Representation
In this section, we discuss argument representations in ABA.
First, we will take a closer look at tree-based arguments.
Even though their number is not bounded in general, we es-
tablish a bound on the number of tree-based arguments de-
pending on the derivation-depth and the length of the rules.
Next, we show that it suffices to consider the assumptions
and the claim of ABA arguments. That is, we abstract away
from the particular set of rules and consider arguments of the
form (A, s) where A is the set of assumptions and s is the
claim of a tree-based argument t. Most importantly, we will
show that both representations are semantically equivalent.

4.1 Tree-based Arguments
As already observed in Section 3, a finite ABAF can give rise
to infinitely many tree-based arguments. We show that, for
the finite case, the number of tree-based arguments depends
on certain parts of the input. More precisely, we establish a
bound on the number of tree-based arguments that considers
derivation-depth and rule-size of a given ABAF.

Formally, an ABAF D is bounded by k-derivation-depth
if for each proof tree t of D it holds that the tree has height
at most k (i.e., the longest path from an assumption to the
claim is at most k). A rule h← b1, . . . , bn is bounded by m
if n ≤ m, and an ABA D is rule-size bounded by m if each
rule in D is bounded by m.

The number of tree-based arguments that can be con-
structed from a given ABAF D depends on the number of
rules, derivation-depth, rule-size, and number of rules with
the same heads, as follows.

Proposition 16. For each m-rule-size bounded ABA frame-
work D = (L,R,A, ) with |{r ∈ R | head(r) = s}| ≤ l
for all s ∈ L, there are at most

lp · |L \ A|, with p =

k−1∑
i=0

mi,

many tree-based arguments of height k ≥ 1.

Thus, the number of tree-based arguments in an ABAF
that is bounded by k-derivation-depth is |A| plus the sum of



all tree-based arguments of height j ≤ k. Hence, exponen-
tiality of the number of tree-based arguments stems from p,
i.e., the derivation-depth and rule-size.

If the derivation-depth is equal to one, i.e., if k = 1, then
the number of tree-based arguments depends linearly on D
and is independent of the length of the rules. In this case, it
holds that p = 1, hence there are at most l · |L \ A| + |A|
many tree-based arguments.

Bounding the rule-size does not yield similar advantages:
for m = 1 the number of arguments still depends on the
derivation-depth and there might be exponentially many,
more precisely, up to lk · |L \A|many tree-based arguments
of height k. We observe that bounding either the derivation-
depth by some k > 1 or the rule-size individually does not
suffice to prevent a potential exponential blowup.

Moreover, while it is guaranteed that, given a fixed ABAF
D, the rule size is bounded by some number m (depending
on D) by definition, the derivation-depth of an ABAF can
be infinite (as is the case in Example 12). Hence, as out-
lined in the previous section, an ABAF can have potentially
infinitely many tree-based arguments.

4.2 Core Arguments
As one can see in Example 12, AFs corresponding to an
ABAF can be “cut down” to a finite core by removing “du-
plicates” of arguments. This observation is sometimes as-
sumed in the literature and stated for other forms of struc-
tured argumentation (Amgoud, Besnard, and Vesic 2014).

Tree-based arguments in an ABAF are defined as proof
trees, with each derivation t based on a set of assumptions
A = leaves(t) and a claim s = cl(t). While the rules
in rules(t) are driving derivability, they are not important
when evaluating arguments: conflicts between arguments
are solely specified via the assumptions A and claim s. A
natural way to represent arguments is thus by using only A
and s. Motivated by this observation, we identify arguments
with pairs (A, s) but insist that there is a corresponding proof
tree t with leaves(t) = A and cl(t) = s in the given ABAF.
We call the resulting set of tuples the core of an ABAF. Let
A,B ⊆ A and s, t ∈ L. We say that (A, s) attacks (B, t) in
an ABAF D if ∃b ∈ B s.t. b = s.
Definition 17. Let D = (L,R,A, ) be an ABAF. Define
A = {(leaves(t), cl(t)) | t is a tree-based argument in D}
and R as the set of all attacks between arguments in A. The
AF F = (A,R) is called the core of D.

Claims and assumptions of a set of arguments H ⊆ A
are defined similarly as for tree-based arguments: cl(H) =
{s | (A, s) ∈ H} and asms(H) =

⋃
(A,s)∈H A. Given an

ABAF D, let F be the corresponding AF and F ′ the core.
• for each tree-based argument t in F there is an argument
(leaves(t), cl(t)) in F ′ and vice versa, and thus

• for each {adm, com, prf , grd , stb}, there is some H ∈
σ(F ) with cl(H) = S and asms(H) = A iff there is
some H ′ ∈ σ(F ′) with cl(H ′) = S and asms(H ′) = A.

If one is not interested in the actual derivation of a claim,
representing an argument as a pair (A, s) narrows down the
argument to the information required in order to reason in

ABAF D ABAF D′ FD′ query
(1a)

in P

(1b)

linear

(2)

NP-h

Figure 3: How to shift intractability to reasoning in the AF: (1a)
construct semantics-preserving ABAF D′ (in P) s.t. (1b) D′ can
be instantiated in linear time; reasoning in FD′ remains NP-hard.

the corresponding AF (the core). A simple observation is
that the core is always finite. Thus, this modification ensures
that step (1) in Figure 1 is now finite, although not tractable.
Observation 18. The core FD of an ABAF D has at most
|2A| · |L \ A|+ |A| arguments.

To some extent surprising perhaps, we can find a
complexity-theoretic result supporting the intuition that the
core is a more compact representation: while deciding
whether a proof tree constitutes a tree-based argument for
a given ABA is immediate, it is NP-hard to decide whether
a pair (A, s) occurs in the core.
Proposition 19. It is NP-hard to decide whether there is a
proof tree from a given set of assumptions to a given claim.

5 Transforming ABAFs: Size of FD

The goal of this section is to transform the given ABAF D
in a way that the construction of the AF, i.e., step (1) in Fig-
ure 1, is tractable and thus, the main source of complexity is
the reasoning within the AF, i.e., lies in step (2).

To this end we first require a sub-class of ABAFs facil-
itating our endeavor. This leads to the notion of so-called
atomic ABAFs which require that each rule body consists
of assumptions only. In such an atomic ABAF, constructing
the AF, i.e., step (1), can be achieved in polynomial time.
The crucial result in this section is Theorem 27 stating that
we can translate any given ABAF into an atomic one, with-
out increasing the size exponentially. Figure 3 illustrates
the overall procedure: for a given ABAF D, we construct
a corresponding ABAF D′ in polynomial time (step (1a))
and construct the corresponding AF FD′ in linear time (step
(1b)). Hence, the source of complexity lies solely in step (2).

The main result of this section is then that for each general
ABAF D we can

1. find an atomic ABAF D′ that preserves the considered
semantics under projection and

2. has polynomially many, concretely |A|+|L\A|·(|R|+3)
many arguments.
We proceed in two steps: after defining atomic ABAFs,

we first show how to treat ABAFs satisfying a certain
acyclicity constraint and translate them into atomic ABAFs.
After that we extend the approach to circular ABAFs.

5.1 Atomic ABAFs
An atomic ABAF is composed of rules which have only as-
sumptions in their bodies.
Definition 20. Let D = (L,R,A, ) be an ABAF. A rule
r ∈ R is called atomic if body(r) ⊆ A. The ABAF D is
called atomic if each rule r ∈ R is atomic.



An example atomic ABAF is shown in Figure 2.
Recall that tree-based arguments are constructed induc-

tively, by utilizing given arguments A1, . . . , An having
conclusions p1, . . . , pn in combination with a rule r s.t.
body(r) = {p1, . . . , pn}. However, since our ABAFs are
assumed to be flat, i.e., no assumption occurs in any rule
head, argument construction in an atomic ABAF consists of
the base case only: each rule induces exactly one argument
and no argument can be constructed by combining differ-
ent rules or arguments. Hence the derivation-depth of each
atomic ABAF is one (cf. Section 4). The set of arguments
corresponding to an atomic ABAF is given as follows:

• Assumptions a induce arguments ({a}, a).
• Rules head(r)← body(r) induce (body(r), head(r)).

This yields the following observation about the class of
atomic ABAFs.

Proposition 21. Let D = (L,R,A, ) be an atomic ABAF.
The core FD of D has |A| + |R| many arguments and can
be computed in polynomial time.

In this result, one can interchange cores and tree-based
arguments. We want to emphasize though that reasoning
in the core of an atomic ABAF remains NP-hard. That is,
atomic ABAFs preserve the full complexity of reasoning.

Theorem 22. Credulous reasoning under semantics σ ∈
{adm, com, prf , stb} is NP-complete for atomic ABAFs.

5.2 From Non-Circular ABA to Atomic ABA
We show how to translate a given ABAF into an atomic
one. For ease of presentation we first assume that our given
ABAF is not circular; we show later how to generalize our
approach. We take the definition of circular tree-based argu-
ments (proof trees) from Craven and Toni (2016).

Definition 23. A tree-based argument is circular if there is
a path from a leaf to the root which contains two distinct
vertices with the same label. An ABAF is circular if there is
a circular tree-based argument for this framework.

Now we are ready to translate a given non-circular ABAF
into an atomic one. Our transformation is defined as fol-
lows. Intuitively, for each conclusion s derivable from a
given ABAF D, we introduce fresh assumptions sd (s is
derivable) and snd (s is not derivable) that simulate tree-
derivations. The resulting ABAF D′ is atomic.

Definition 24. Let D = (L,R,A, ) be a non-circular ABA
framework such that each s ∈ L is in ThD(A). We define
D′ = (L′,R′,A′, ′) as the AF-sensitive ABA framework of
D as follows. For each s ∈ L \ A
• let sd and snd be two fresh assumptions, with
• sd = snd and snd = s in ′.

Let A′ = A ∪ {sd, snd | s ∈ L \ A} and L′ = L ∪ A′. The
assumptions that are present in D have the same contraries
in D′ as in D. For each rule r ∈ R, let r′ be r except
that if body(r) contains a non-assumption s, replace s by
sd. Finally, setR′ = {r′ | r ∈ R}.

The fact that D′ is atomic is immediate by definition.

Proposition 25. Given a non-circular ABAF D, the AF-
sensitive ABAF D′ is atomic.

The following example illustrates our construction.
Example 26. Consider an ABA framework D =
(L,R,A, ) with assumptions A = {a, b}, rulesR:

r1 : p← q; r2 : q ← a; r3 : r ← b;

and contraries a = r and b = p. In D, both {a} and {b}
are admissible as they symmetrically attack each other.

Following Definition 24, we obtain the corresponding
ABA D′ = (L′,R′,A′, ′) with assumptions a, b, and ad-
ditional assumptions pd, pnd, qd, qnd, rd, rnd; and rulesR:

r′1 : p← qd; r′2 : q ← a; r′3 : r ← b.

The assumption qd is defended by each assumption set that
derives q (since qd is attacked by qnd which is in turn at-
tacked by all assumption sets that derive q). Consequently,
{qd, a} is admissible since it derives q and p and thus defeats
the attackers b and qnd. Likewise, {b, qnd} is admissible in
D′ as it defends itself against the attack from qd and a.

As we have seen in the above example, restricting the out-
come to the initial set of assumptions yields the original ex-
tensions. This is not a coincidence: acceptable assumption
sets and derivations are preserved when projecting to A of
the original ABA framework.
Theorem 27. Let D = (L,R,A, ) be a non-circular ABA
framework such that each s ∈ L is in ThD(A) and D′ the
AF-sensitive ABA framework of D. It holds that
• if E ∈ adm(D), then there is an E′ ∈ adm(D′) with
E = E′ ∩ A and ThR(E) = ThR′(E′) ∩ L, and

• if E′ ∈ adm(D′), then E′ ∩ A ∈ adm(D) and
ThR(E) ⊇ ThR′(E′) ∩ L.

Moreover, for σ ∈ {com, prf , stb} we find that
• if E ∈ σ(D), then there is an E′ ∈ σ(D′) with E =
E′ ∩ A and ThR(E) = ThR′(E′) ∩ L, and

• if E′ ∈ σ(D′), then E′ ∩ A ∈ σ(D) and ThR(E) =
ThR′(E′) ∩ L.

5.3 Transforming Circular ABAFs
As indicated, we do not have to restrict to non-circular
ABAFs. In this subsection we show that any ABAF can be
translated into a non-circular one (of polynomial size).

The underlying idea is to disrupt cycles using auxiliary
rules and atoms. To this end, we utilize the following crucial
observations. For a given ABAF D,

1. it suffices to construct tree-based arguments up to a cer-
tain derivation-depth k to preserve the semantics; and

2. k depends polynomially on D, i.e., there is a polynomial
p such that k < p(|D|) for any ABAF D.

After establishing both observations, we define an ABAF
D′ where we simulate the k derivation steps with auxil-
iary rules. Intuitively, the procedure is as follows: we copy
each rule k times and introduce a hierarchical order between
atoms on different levels. In this way, we guarantee that an
atom si which appears in some rule ri (on the i-th level)
can participate in deriving only atoms sj with j > i, thus
preventing cyclic derivations.



Bounding the derivation-depth Towards our results, we
make use of the concept of redundant arguments.
Definition 28. Let D be an ABA framework and F = (A,R)
the core of D. An argument (A, s) ∈ A is called redundant
in F iff there is an argument (A′, s) ∈ A with A′ ⊊ A.

The following lemma formalizes that we can remove re-
dundant arguments from the core without changing the se-
mantics of the induced AF F . As usual for AFs, by F↓S we
define the projection F↓S= (A ∩ S,R ∩ (S × S)).
Lemma 29. Let D be an ABAF and F = (A,R) the core of
D. Let x = (A, s) ∈ A be a redundant argument. Then for
each σ ∈ {adm, com, prf , stb} we have

{cl(E) | E ∈ σ(F )} = {cl(E) | E ∈ σ(F↓A\{x})}.
If we are only interested in arguments that are non-

redundant, then we can skip the computation of many tree-
based arguments, because new information can only be
found up to a certain derivation depth. Each non-redundant
argument can be obtained with derivation depth |L \ A|.
Proposition 30. Let D = (L,R,A, ) be an ABA frame-
work and F = (A,R) the core of D. If (A, s) ∈ A is not
redundant, then there is some tree-based argument t with
leaves(t) = A and cl(t) = s in D such that the derivation
depth of t is at most |L \ A|.

We have shown that (1) it is possible to bound the
derivation-depth by some k without changing the semantics
of a given ABAF; and (2) k = |L \ A| is linear.

Disrupting cycles Let us continue with our procedure for
constructing a non-circular ABAF from a circular one.
Definition 31. Let D = (L,R,A, ) be an ABAF. We define
the non-circular ABA D◦ as follows. Let k = |L \ A|. For
each atomic rule r = s ← p1, . . . , pn in R we consider k
copies r1, . . . , rk of the form ri = si ← p1, . . . , pn with
sk = s. For each remaining rule r = s ← p1, . . . , pn
in R we consider k − 1 copies r2, . . . , rk where for each
2 ≤ j ≤ k: head(rj) = sj with sk = s, if pi ∈ A, then
pi ∈ body(rj), if pi /∈ A, then pj−1

i ∈ body(rj). We let
D◦ = (L◦,R◦,A, ) where

L◦ = L ∪
k⋃

j=1

{sj | s ∈ L \ A} and

R◦ =

k⋃
j=1

{rj | r atomic } ∪
k⋃

j=2

{rj | r not atomic }.

Example 32. Consider an ABAF with A = {a}, L =
{a, p, q}, and rulesR = {p← a, p← q, q ← p}. We have
k = 2 and thus obtain 4 rules p1 ← a, p2 ← a, p2 ← q1,
and q2 ← p1, where p2 = p and q2 = q.

The following lemma shows that D◦ captures all non-
redundant arguments in D.
Lemma 33. Let D = (L,R,A, ) be an ABAF. If there
is a non-redundant argument t in D then there is also an
argument t′ in D◦ with leaves(t′) = leaves(t) and cl(t′) =
cl(t) . Vice versa, if t is an argument in D◦, then there is
also an argument t′ in D satisfying the same conditions.

ABAF D ABAF D′ FD′ query
(1a)

in P

(1b)
exp.

blowup

(2)

in P

Figure 4: Shifting intractability to reasoning in the AF: (1a) con-
struct acceptance-preserving ABAF D′ (in P) s.t. (1b) D′ has a
simple structure; reasoning in FD′ is in P.

Since D◦ is non-circular by construction, we obtain the
following desired corollary.
Corollary 34. Let D = (L,R,A, ) be an ABA. Then D◦

is non-circular and satisfies σ(D) = σ(D◦) for each σ ∈
{adm, com, prf , grd , stb}.

5.4 From ABA to Atomic ABA
We are ready to prove the main result of this section.
Theorem 35. Let D = (L,R,A, ) be an ABAF. There is an
ABAF D′ s.t. FD′ has at most |A|+ |L\A| · (|R|+3) many
arguments and D′ preserves the σ-extensions of D under
projection.

Proof. First, we apply the construction from Definition 31.
We construct D◦ = (L◦,R◦,A, ) in time O(|D|2) by
looping through all rules, copying them |L \ A| times, and
adding rules s← sj for all newly introduced atoms sj . The
ABAF D◦ contains |L \A|(|R|+1) many rules. By Corol-
lary 34, the transformation preserves the semantics. Next,
we apply the construction from Definition 24 and obtain
an atomic ABAF (D◦)′ = ((L◦)′, (R◦)′,A′, ′) in linear
time in the size of D◦. We obtain |A| + 2|L \ A| many
assumptions. Note that we do not add further rules, i.e.,
|(R◦)′| = |R◦|. By Theorem 27, the semantics are pre-
served under projection. Moreover, by Proposition 21, the
number of arguments in (D◦)′ is equal to |A′| + |(R◦)′| =
|A′|+ |R◦| = |A|+ 2|L \ A|+ |L \ A|(|R|+ 1).

6 Transforming ABAFs: Reasoning in FD

In this section we show how to transform an ABAF D in a
way that step (2) in Figure 1 is tractable (w.r.t. the size of
the constructed AF) and thus, the main source of complexity
lies in the size of the AF, i.e., step (1). Figure 4 illustrates the
idea: from a given ABAF D, we construct a corresponding
ABAF D′ in polynomial time (step (1a)) which yields an AF
of exponential size but with simple structure (step (1b)).

Again, we require a suitable ABA sub-class to achieve
our goal. To this end we introduce a novel class called sym-
metric ABAFs. They are tailored to ensure that reasoning is
tractable (w.r.t. the size of FD), but the number of arguments
is exponential in general.

6.1 Symmetric ABAFs
An ABAF is symmetric if the contraries are symmetric.
Definition 36. Let D = (L,R,A, ) be an ABAF. We call
D symmetric whenever a = b iff b = a for all a, b ∈ A.

First we observe that credulous reasoning is still NP-hard,
even if we restrict to symmetric ABAFs.
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Figure 5: AF instantiation of the ABA framework from Example 38
for the formula ϕ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) (cf. Reduction 37).

Reduction 37. Let ϕ = c1 ∧ · · · ∧ cm be a Boolean for-
mula in conjunctive normal form (CNF) over clauses C =
{c1, . . . , cm} and Boolean variables X = {x1, . . . , xn}.
Define X ′ = {x′ | x ∈ X}. Construct D = (L,R,A, )
by L = X ∪ X ′ ∪ C ∪ {ϕ}, A = X ∪ X ′, x = x′ and
x′ = x for each x ∈ X , and let the set of rules be composed
of ϕ ← c1, . . . , cm, and ci ← z with z = x and x ∈ ci or
z = x′ and ¬x ∈ ci.
Example 38. Given the CNF-formula ϕ = (x1 ∨ ¬x2) ∧
(¬x1 ∨ x2). Following Reduction 37, we obtain an ABAF
D = (L,R,A, ) which contains the assumptions A =
{x1, x2, x

′
1, x

′
2} and the rules φ ← c1, c2, c1 ← x1, c1 ←

x′
2 (since x1,¬x2 ∈ c1) as well as c2 ← x′

1, c2 ← x2 (since
x′
1, x2 ∈ c2). Moreover, the ABA framework assigns sym-

metric contraries, i.e., xi = x′
i and x′

i = xi for i ∈ {1, 2}.
The induced AF FD is depicted in Figure 5.

Complexity of reasoning in symmetric ABAFs follows.
Proposition 39. Credulous reasoning under semantics
σ ∈ {adm, com, prf , stb} is NP-complete for symmetric
ABAFs.

Hence, similar to atomic ABAFs, symmetric ABAFs have
the full computational hardness of general (flat) ABAFs.

On the other hand, we observe that the computational
hardness in symmetric ABAs stems entirely from the con-
struction of arguments: constructing the cores results in AFs
with |A|/2 even cycles of length 2 (a cycle for every as-
sumption and its negation) satisfying that all arguments with
claim s /∈ A have only incoming attacks.

In Example 38, it is direct to check whether ϕ is the con-
clusion of an acceptable argument, once the AF FD is given.
Credulous reasoning in such AFs is decidable in polynomial
time in the number of arguments, since it suffices to check if
there exists an argument having the queried claim that is not
attacked by both arguments in a 2-cycle.
Proposition 40. Credulous reasoning under semantics σ ∈
{adm, com, prf , stb} is decidable in polynomial time in
cores of symmetric ABAs.

Making use of symmetric ABAFs, we get the desired
computational shift to step (1) in Figure 1.

6.2 From SAT to Symmetric ABAFs
We show a way of utilizing symmetric ABAFs to contain
hardness in the AF construction. Suppose we want to trans-

form an ABAF D. Since the SAT problem is NP-complete,
we can construct in polynomial time a formula ϕ which is
satisfiable iff p is credulously accepted in D. Now, Reduc-
tion 37 translates ϕ into a symmetric ABAF. All these steps
can be performed in polynomial time.

Theorem 41. Let σ ∈ {adm, com, prf , stb}. For each ABA
framework D = (L,R,A, ) and p ∈ L one can construct
an ABA framework D′ in polynomial time s.t. (1) x is cred-
ulously accepted in D′ iff x is credulously accepted in D
w.r.t. σ, and (2) credulous acceptance is in P under σ in the
corresponding AF F .

7 Experiments
We implemented the translation discussed in Section 5 to
empirically evaluate the potential of answering credulous
reasoning in ABA with a polynomially bounded AF con-
struction. We implemented two procedures for breaking cy-
cles in circular ABAFs. We call the first the Naive method:
it is explained in Section 5.3, each rule is copied k times for
a maximum derivation-depth k. We additionally implement
a procedure, which we call the SCC method. The idea is
similar, but the SCC method only copies rules within each
strongly connected component (SCC) of the graph corre-
sponding to the rules of a given ABAF, and up to the size
of the particular SCC in terms of atoms. The implementa-
tion, written in Python, is available at https://bitbucket.org/
lehtonen/acbar.

We ran the experiments on 2.60-GHz Intel Xeon E5-2670
57-GB machines with RHEL 8 under a per-instance time
limit of 600 seconds and memory limit of 16 GB. We used
the state-of-the-art AF solver MU-TOKSIA (Niskanen and
Järvisalo 2020) for deciding credulous acceptance in the AF
resulting from our translation. We compared our system
against ASPFORABA, the state-of-the-art solver for ABA,
which answers credulous acceptance with ASP encodings
directly on the ABA level (Lehtonen, Wallner, and Järvisalo
2021a), as well as a state-of-the-art translation-based ap-
proach to ABA reasoning, ABA2AF (Lehtonen, Wallner, and
Järvisalo 2017). We tested credulous acceptance under sta-
ble and admissible semantics (the latter coincides with cred-
ulous acceptance under complete and preferred semantics).

We considered non-circular and circular instances sepa-
rately, creating two synthetic benchmark sets. To construct
non-circular instances, we generated 10 ABA frameworks
per each combination of the following parameters: number
of atoms N ∈ {1000, 2000, 3000, 4000, 5000}, the propor-
tion of the atoms that are assumptions Ar ∈ {0.15, 0.3, 0.7},
and the number of rules that have a given atom as a head
and the rule width, i.e., number of atoms in the body of a
given rule was selected uniformly at random from the inter-
val [1, n] for n ∈ {2, 5, 8, 13}. To enforce non-circularity,
we selected a random permutation (xi)0<i≤n of the non-
assumption atoms in the instance and let assumptions have
index 0. When creating a rule deriving the atom xi, we only
allowed an atom xj in the body if j < i. Any graph corre-
sponding to the possible derivations in the ABAF created in
this manner obeys the topological order specified by the cho-
sen permutation and is thus a directed acyclic graph. Further,

https://bitbucket.org/lehtonen/acbar
https://bitbucket.org/lehtonen/acbar
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Figure 6: Per-instance runtime comparison of credulous reasoning
between ASPFORABA and our novel ABA translation with the AF
solver mu-toksia under com for non-circular instances.
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Figure 7: Per-instance runtimes of credulous acceptance in circular
ABA frameworks in terms of the largest SCC in a given instance
under stable semantics.

all assumptions were assigned a contrary at random. Finally,
we randomly selected one non-premise atom per framework
as a query, for a total of 2400 instances.

For the circular setting we fixed the ratio of assumptions
to 0.3, and both the maximum number of rules per head and
rule width to 5, to focus on the effect of the size of SCCs
in the rules of a given instance. We generated 100 frame-
works for each N ∈ {1000, 2000, 3000, 4000} and selected
a query at random, for a total of 400 instances. We let a pro-
portion (selected uniformly at random from [0, 1/50] for each
framework) of the atoms later in the ordering than the head
of a given rule be available for the body of the rule.

A comparison between ASPFORABA and our approach
of translating an ABA framework to an atomic one before
constructing an AF and deciding credulous acceptance via
an AF solver is shown in Figure 6 for non-circular bench-
marks under complete semantics, with timeouts shown as
600 seconds. We used the AF solver MU-TOKSIA for our ap-

proach. Our approach outperforms ASPFORABA in terms
of timeouts, while for many apparently easier instances,
ASPFORABA is faster. For credulous acceptance under stb,
we observed similar results, but with our translation-based
approach and ASPFORABA tied in number of timeouts.

In contrast, ABA2AF, an approach that employs a trans-
lation from ABA to AF and using an AF solver, performs
significantly worse. ABA2AF is able to solve only 195 out
of the 2400 acyclic instances, compared to 2371 for our
translation-based approach. This confirms the efficiency
gains from preprocessing an ABA framework to an atomic
one, ensuring that the resulting AF is of polynomial size.

A comparison between our approach, using the different
cycle disruption techniques, and ASPFORABA is shown in
Figure 7. The instances are ordered according to the largest
SCC occurring in a graph corresponding to the rules of the
instance. When using the Naive cycle disruption method,
our approach is outperformed on all instances. However,
using the SCC cycle disruption method improves our ap-
proach considerably. The runtime of our approach using
the SCC method has a clear correlation with the size of the
largest SCC of a given instance. When the size of the SCCs
in an instance is limited (especially to under around 200
atoms), our approach with the SCC method is competitive
with ASPFORABA. As the size of the largest SCC in an
instance grows, the runtime of our approach deteriorates in
comparison to ASPFORABA.

8 Discussion
The computation of an AF from structured argumentation
formalisms, and different argument representations and op-
timizations, have been considered before for ABA (Craven
and Toni 2016; Bao, Čyras, and Toni 2017; Lehtonen, Wall-
ner, and Järvisalo 2017), and for other forms of struc-
tured argumentation (Amgoud, Besnard, and Vesic 2014;
Yun, Vesic, and Croitoru 2018). Moreover, complexity of
ABA has been investigated in several directions (Dimopou-
los, Nebel, and Toni 2002; Čyras, Heinrich, and Toni 2021;
Lehtonen, Wallner, and Järvisalo 2021a; Karamlou, Čyras,
and Toni 2019), potentially exponential AFs arising from
structured argumentation and their issues has been dis-
cussed, e.g., by Strass, Wyner, and Diller (2019), and in-
finite arguments for ABA were investigated (Thang, Dung,
and Pooksook 2022). In contrast to these works, we relate
features of the given ABA instance to the size of the result-
ing arguments and complexity of reasoning.

We showed that the complexity of credulous acceptance
in ABA via instantiating an AF can be confined to either the
instantiation step or the AF reasoning step. This is in con-
trast to the standard instantiation procedure in which both
steps are intractable. As we confirm empirically, our results
pave the way for efficient instantiation-based ABA reason-
ing, which previously has not been competitive with directly
reasoning on the level of an ABAF. While NP-hardness of,
e.g., credulous reasoning is a clear theoretical barrier, an in-
teresting avenue for future research is to combine the reduc-
tion of the size and complexity of an instantiated AF, thereby
possibly combining strengths of both approaches.
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Čyras, K.; Fan, X.; Schulz, C.; and Toni, F. 2018.
Assumption-based argumentation: Disputes, explanations,
preferences. In Baroni, P.; Gabbay, D.; Giacomin, M.; and
van der Torre, L., eds., Handbook of Formal Argumentation.
College Publications. chapter 7, 365–408.
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A Omitted Proofs of Section 4
Proposition 16. For each m-rule-size bounded ABA frame-
work D = (L,R,A, ) with |{r ∈ R | head(r) = s}| ≤ l
for all s ∈ L, there are at most

lp · |L \ A|, with p =

k−1∑
i=0

mi,

many tree-based arguments of height k ≥ 1.

Proof. To prove the statement, we show that the number of
all possible trees constructible from D is bounded by n · lp
with p =

∑k−1
i=0 mi and n = |L \ A|. Here, we do not re-

quire that the leaves of the trees are labeled as assumptions.
Observe that the set of all tree-based arguments of height k
is a subset of the number of all trees constructible from D.

For each literal s ∈ L\A which appears as head of a rule
in D, there are at most l ·xm many trees where x is the max-
imum number of trees with head c for a literal c ∈ body(r)
for some rule r with head(s). Indeed, there are at most l
rules with head s, all bounded by m. We express this corre-
spondence via the function f(x) = l · xm. The total number
of trees with root s constructible from D after k steps is thus
given by fk(1). We show that fk(1) = l

∑k−1
i=0 mi

via induc-
tion over k.

For k = 1, we have f(1) = l.
Now assume the statement holds true for rule depth k−1.

fk(1) = l · (fk−1(1))m

= l · (l
∑k−2

i=0 ki

)m

= l · lm(
∑k−2

i=0 mi)

= l
∑k−1

i=0 mi

.

We thus obtain that the number of all possible trees of
height k constructible from D is bounded by lp · n with
p =

∑k−1
i=0 mi.

Proposition 19. It is NP-hard to decide whether there is a
proof tree from a given set of assumptions to a given claim.

Proof. Let ϕ = c1 ∧ · · · ∧ cm be a Boolean formula in con-
junctive normal form over vocabulary X = {x1, . . . , xn}
with C = {c1, . . . , cm} the set of clauses. Construct ABA
D with A = C, atoms C together with literals over X and
{dx1 , . . . , dxn}, and the following rules (contraries are not
relevant). We view clauses as sets of literals. Note that “¬x”
is a symbol in ABA and has no meaning attached to the
negation sign.

x←{c ∈ C|x ∈ c},¬x← {c ∈ C|¬x ∈ c} for each x ∈ X

dx ←x, dx ← ¬x for each x ∈ X

f ←dx1
, . . . , dxn

We claim that (C, f) is an argument iff ϕ is satisfiable.

First, assume that ϕ is satisfiable and consider a satisfying
assignment τ of ϕ. We show that (C, f) is an argument in
D. We construct the corresponding tree-based argument as
follows: starting from rule f ← dx1

, . . . , dxn
, we consider

rule dx ← x in case τ(x) = 1 and rule dx ← ¬x in case
τ(x) = 0. We show that for each clause c ∈ C, there is
at least one leaf labeled c: Consider a clause c ∈ C. Then
there is a literal l ∈ c such that τ(l) = 1. In case l = x
for some x ∈ X , we obtain that dx has a predecessor leaf
labeled c (because x ← {c ∈ C|x ∈ c} and because we
used the rule dx ← x in the construction); likewise, in case
l = ¬x, dx has a predecessor labeled c. As c was arbitrary,
we have shown that (C, f) is an argument in D.

For the other direction, assume (C, f) is an argument in
D. Consider the corresponding tree-based argument t. We
construct a satisfying assignment of ϕ by inspecting which
rules to derive dx appear in the tree t; that is, we define τ as
follows: For an atom x ∈ X , we define τ(x) = 1 if dx has
predecessors C ′ ⊆ C stemming from chaining rules dx ← x
and x ← C ′; otherwise τ(x) = 0 if dx has predecessors
C ′′ ⊆ C stemming from chaining the rules dx ← ¬x and
¬x← C ′. In case C ′ = C ′′ we let τ(x) = 1. Observe that τ
is well-defined because dx appears exactly once in the tree-
based argument t (otherwise, t is not a tree because it has
(at least) two distinctive roots). Thus each atom is assigned
either true or false. Moreover, each clause c ∈ C is satisfied
by τ : Given c ∈ C, then there is a literal l and a rule l← C ′

such that c ∈ C ′, otherwise t does not contain a leaf labeled
c. By construction of D this implies that l ∈ c. In case l = x
for some x ∈ X , the tree t is constructed from dx ← x
and thus τ(x) = 1, consequently c is satisfied; otherwise,
¬x ∈ c and the tree t is constructed from dx ← ¬x, thus
τ(x) = 0, again, c is satisfied. As c was arbitrary, we have
shown that τ is a satisfying assignment of ϕ.

B Omitted Proofs of Section 5
Proposition 21. Let D = (L,R,A, ) be an atomic ABAF.
The core FD of D has |A| + |R| many arguments and can
be computed in polynomial time.

Proof. Since D is atomic and flat, each tree-based argument
t stems from either an assumption a ∈ A yielding the core
argument (a, a) or from a rule s ← p1, . . . , pn yielding the
core argument ({p1, . . . , pn}, s). No further argument can
be constructed.

Theorem 22. Credulous reasoning under semantics σ ∈
{adm, com, prf , stb} is NP-complete for atomic ABAFs.

Proof. Consider a CNF ϕ with clauses C = {c1, . . . , cm}
and Boolean variables X = {x1, . . . , xn}, let D be the
constructed ABA according to Reduction 14, and let F =
(A,R) be the core of D. An example of the construction
is given in Figure 2. The ABAF D is atomic, moreover, as
discussed in Section 3, the AF F corresponds to the stan-
dard translation (Dvořák and Dunne 2018, Reduction 3.6).
Hence, ϕ is satisfiable iff the corresponding tree-based argu-
ment t with cl(t) = ϕ is satisfiable. Due to the semantics
correspondence of the ABAF D and its associated AF F ,
this is the case iff ϕ is credulously accepted in D.



B.1 Proof of Theorem 27
Towards proving Theorem 27, we observe that the condition
‘each s ∈ L is contained in Th(A)’ guarantees that each
rule is applicable: We say that a rule r is applicable in an
ABA framework D if it holds that all body elements of r
are derivable in D, or, in different words, there exists a tree-
based argument in D whose top rule is r (the one deriving
the claim of the tree-based argument).

Since each atom in a rule r ∈ R can be derived in an
ABA that satisfies that each s ∈ L is contained in Th(A)
(and thus each proof tree construction terminates) we obtain
the following useful lemma.

Lemma 42. Given an ABA D that satisfies each s ∈ L is
contained in Th(A). Then each rule is applicable.

Lemma 43. Let D = (L,R,A, ) be a non-circular
ABA framework such that each s ∈ L is in ThD(A) and
D′ = (L′,R′,A′, ′) the AF-sensitive ABA framework of
D. Moreover, let E′ ∈ adm(D′), E = E′ ∩ A, and
U = {a ∈ A | E does not attack a in D}. The following
statements hold.

1. If xd ∈ E′ then there is a rule r′ ∈ R′ with head(r′) = x
and body(r′) ⊆ E′.

2. If xnd ∈ E′ then for all rules r′ ∈ R′ with head(r′) = x
it holds that E′ attacks body(r′) in D′.

3. If xd ∈ E′ then x ∈ ThR(E).
4. If xnd ∈ E′ then x /∈ ThR(E ∪ U).

If E′ ∈ com(D′) then the following statements hold:

5. xd ∈ E′ iff x ∈ ThR(E), and
6. xnd ∈ E′ iff x /∈ ThR(E ∪ U).

Proof. Let D, D′, E, E′, and U as defined in the statement
of the lemma.

For Item 1, assume that xd ∈ E′. This implies that there is
an x ∈ L\A. It holds that {xnd} attacks xd. By admissibil-
ity of E′, we conclude that E′ attacks xnd. Since xnd = x,
it must hold that x ∈ ThR′(E′). By construction of D′, for
all r′ ∈ R′ it holds that body(r′) ⊆ A′ (only assumptions
in bodies). If for each r′ ∈ R′ with head(r′) = x we find
that body(r′) ⊈ E′ then x is not derivable from E′ in D′, a
contradiction. This implies that there is a rule r′ ∈ R′ with
head(r′) = x and body(r′) ⊆ E′ (statement 1 is proven).

For Item 2, assume that xnd ∈ E′ and suppose, for the
sake of finding a contradiction, that there is a rule r′ ∈ R′

with head(r′) = x such that E′ does not attack body(r′)
in D′. It holds that body(r′) attacks xnd in D′ (recall that
all body elements are assumption and that xnd = x). If
xnd ∈ E′ and E′ does not attack body(r′) then E′ is not
admissible in D′, a contradiction.

For Item 3, assume that xd ∈ E′. To show that x ∈
ThR(E), we construct a labeled tree G = (V,A) that con-
tains, intuitively speaking, all possible tree-based deriva-
tions of x in D. We construct G by iterative construction
of different levels (stages) as follows.

• We construct a single node at stage 0 and label it with xd.

• Assuming G is constructed up to stage i, we construct
stage i+1 as follows: if v is a vertex constructed in stage
i with label x′

d ∈ L′, then, for each rule r′ in D′ with
body(r′) ⊆ E′ such that head(r′) = x′ and l ∈ body(r′),
add a vertex y with label l ∈ body(r′) to stage i+ 1, and
connect it to v (i.e., add (l, v) to the set of arcs A).

First observe that for each vertex v labeled with x′
d there is

always at least one rule r′ ∈ R′ with head x′. This holds be-
cause if x′

d ∈ A then there is an atom x′ ∈ L\Awhich must
be derivable in D, by assumption (x′ ∈ Th(A)) and, thus,
there is a corresponding rule concluding x′ in R′. We show
that the process above for construction of G terminates. To
see this, suppose otherwise. Then there is an infinite se-
quence of vertices (v1, v2, . . .) starting from a vertex v1 la-
beled with xd and an between neighboring vertices in the
sequence. Since there are finitely many labels, there are two
vertices with the same label in the sequence. Let these ver-
tices be vi and vj , i < j. Then one can construct a derivation
tree in D s.t. there is a path from an assumption in this tree to
the root visiting the same label of vi and vj twice: by deriv-
ability of all atoms, we can find a derivation of the label of
vj , and extend it to vi through the rules corresponding to the
rules required to make up the sequence. This contradicts the
presumption that D is non-circular.

By presumption that D is non-circular, we conclude that
G is a finite tree, with root xd. The leaves of this tree are
assumptions inA (in fact in E): suppose a leaf is labeled by
some yd. Then, by admissibility of E′, we find that there is
some rule r′ ∈ R′ with body(r′) ⊆ E′ and head(r′) = y
(Item 1). But then this cannot be a leaf. Together with ter-
mination, we conclude that leaves must be assumptions in D
not of the form zd for some z ∈ L\A (i.e., leaves are labeled
by assumptions inA and by the previous reasoning and con-
struction also in E). Then G contains a subtree that directly
corresponds to a derivation of x in D by E (leaves are as-
sumptions in A and each internal node can be labeled ac-
cording to derivation trees). This implies that x ∈ ThR(E).

For Item 4, assume that xnd ∈ E′. Suppose that x ∈
ThD(E ∪ U). Then there is a tree-based argument E ∪
U ⊢R x in D. By Item 2, whenever ynd ∈ E′ then E′

attacks body(r′) for all rules r′ ∈ R′ with head(r′) = x.
Iteratively go through the tree-based argument, starting with
s1 = x and i = 1. We find that there must be a rule r ∈ R
that is part of the tree-based argument with head(r) = si

and, thus a rule r′ ∈ R′ with head(r′) = si. Moreover,
sind ∈ E′. We already showed that E′ attacks body(r′) on
some w ∈ body(r′). Consider two cases.

• w ∈ A. Then w ∈ E ∪ U (since E ∪ U ⊢R x is the
tree-based argument). It holds that E′ derives w in D′. If
w ∈ A then w ∈ E′. If w ∈ E then E′ is not conflict-free:
w ∈ E′ and w is derivable from E′ in D′, a contradiction.
If w ∈ U , then (i) either w ∈ A and E attacks U in D (a
contradiction) or (ii) w /∈ A and w = yd with y ∈ L \ A.
Then y ∈ ThR(E), contradicting that E does not attack
U in D.

• w /∈ A. Then w = yd with y ∈ L \ A. By construction,
ynd ∈ E′ and there is a rule r ∈ R part of the tree-based



argument concluding y. By Item 3 we again infer that E′

attacks body(r′) of the corresponding rule r′ ∈ R. We set
si+1 = y and continue.

This process terminates, as a tree-based argument is as-
sumed to be finite. This implies a contradiction of the form
as in the previous first item: E attacks either E or U . Thus,
we conclude that x /∈ ThD(E ∪ U).

For Item 5, assume that x ∈ ThR(E). Let T = E ⊢R x
be a tree-based argument that witnesses the derivation. We
show by induction on the height of the derivation that if there
is a node v labeled l in (a derivation tree of) T then then (i)
l ∈ E′ and E′ defends l in D′ or (ii) l /∈ E′ and E′ defends
ld in D′. For the base case (height 0) we find that l ∈ E. The
statement holds directly (E = E′ ∩ A) and by assumption
that E′ is complete in D′. Assume that the statement holds
up to height i. Then l ∈ L \ A (D is flat) and there is a
rule r ∈ R with head(r) = l and the children of the current
node are body(r). Since E′ is complete, and by assumption
that the statement holds up to i, we infer that E′ defends
body(r′) of the corresponding rule r′ ∈ R′ to r. But then
body(r′) ⊆ E′. Then E′ attacks lnd (E′ derives l). Then E′

defends ld.
For Item 6, assume that x /∈ ThR(E∪U). First we prove

that E′ attacks any a ∈ A \ (E ∪ U) in D′. Suppose E′

does not attack such an a in D′. Then a /∈ ThR′(E′). If a
is an assumption in D′, then a ∈ A (by construction of D′),
and E does not attack a in D. But then a ∈ U . If a is not
an assumption in D′ then a = y and there is an yd ∈ A′.
We infer that yd is not in E′ (since E′ does not derive y in
D′ and then yd is not defended by E′ in D′). By Item 5, we
conclude that ThR(E) does not contain y. But then E does
not attack a in D, a contradiction to a /∈ E ∪ U .

Suppose for the sake of finding a contrary that xnd /∈ E′.
Then there is an X ⊆ A′ that attacks xnd and E′ does not
attack X (both in D′). If X ⊆ A, then X ⊆ E ∪ U (by
reasoning above, E′ attacks all assumptions in A outside of
E ∪ U in D′). But then x ∈ ThR(E ∪ U), a contradiction.
Then X ⊈ A and X contains some yd. This yd is not at-
tacked by E′ in D′, i.e., ynd /∈ E′. By the same reasoning
above, we can find a rule in D′ whose body contains a zd
not attacked by E′. Continuing this iteratively, we first ter-
minate (no acyclic derivations) and reach rules with bodies
only in A. By the above, we arrive at a contradiction.

We are now ready to prove the theorem.

Theorem 27. Let D = (L,R,A, ) be a non-circular ABA
framework such that each s ∈ L is in ThD(A) and D′ the
AF-sensitive ABA framework of D. It holds that

• if E ∈ adm(D), then there is an E′ ∈ adm(D′) with
E = E′ ∩ A and ThR(E) = ThR′(E′) ∩ L, and

• if E′ ∈ adm(D′), then E′ ∩ A ∈ adm(D) and
ThR(E) ⊇ ThR′(E′) ∩ L.

Moreover, for σ ∈ {com, prf , stb} we find that

• if E ∈ σ(D), then there is an E′ ∈ σ(D′) with E =
E′ ∩ A and ThR(E) = ThR′(E′) ∩ L, and

• if E′ ∈ σ(D′), then E′ ∩ A ∈ σ(D) and ThR(E) =
ThR′(E′) ∩ L.

Proof. Let D and D′ be given as stated.
(⇒) First, let E ∈ adm(D). Construct

U = {u ∈ A | E does not attack u in D},
B = {s ∈ L \ A | s /∈ ThR(E ∪ U)}.

The intuition is that U contains “undefeated” assumptions
which are not attacked by E in D, and B contains all non-
assumptions whose derivation is “blocked” by E in the sense
that to derive them one requires an attacked assumption.
Now we let

E′ = E ∪ {sd | s ∈ ThR(E) \ A} ∪ {snd | s ∈ B} (1)

That is, E′ contains all assumptions in E, all assumptions sd
whenever s is derivable from E in D, and all assumptions
snd whenever the derivation of s is “blocked” in D.

Our first step is to show that E′ ∈ cf (D′). Suppose the
contrary, i.e. E′ /∈ cf (D′). Then there is an a′ ∈ E′ s.t.
a′ ∈ ThR′(E′). We consider three cases:

(Case 1) a′ is of the form sd for some s ∈ L \ A: We
infer that sd ∈ E′ and snd ∈ E′ (only the latter assumption
attacks the former). However, by (1), sd ∈ E′ implies s ∈
ThR(E) and snd ∈ E′ implies s ∈ B, i.e. s /∈ ThR(E∪U).
This is a contradiction since derivability is upward-closed
under ⊆.

(Case 2) a′ is of the form snd for some s ∈ L \A: Hence
it holds that snd ∈ E′ and there is a rule r′ ∈ R′ s.t.
head(r′) = snd = s and body(r′) ⊆ E′ (all rules in D′

contain only assumptions). Observe that in D′ no assump-
tion of the form snd occurs in the body of any rule, i.e., we
even have body(r′) ⊆ E ∪ {sd | s ∈ ThR(E)}. Now s
is derivable from E in D. To see this, note that there is a
corresponding rule r to r′ in D, and for each body element
in r it holds that E either contains the body element, if it is
an assumption, or derives the body element. We arrive at a
contradiction: snd ∈ E′ implies s ∈ B, in turn implying
that s is not derivable from E in D.

(Case 3) a′ ∈ A: Then there is a rule r′ ∈ R′ with
head(r′) = a′, and body(r′) ⊆ E′. By construction, it fol-
lows that there is a rule r ∈ R with head(r) = head(r′)
and the body elements of r and r′ are the same, except
for non-assumptions s ∈ body(r) which are replaced by
sd in r′. By construction of E′, it follows directly that
body(r) ⊆ ThR(E) (since E ⊆ E′ and all derivable atoms
from E are present as sd in E′, implying that for all body
elements sd in body(r) one has a body element s in body(r)
and one can derive s from E). This implies that E /∈ cf (D),
a contradiction.

We conclude E′ ∈ cf (D′). Now suppose that E′ /∈
adm(D′). This implies that there is an assumption set
A′ ⊆ A′ s.t. A′ attacks E′ in D′, but E′ does not attack
A′ in D′. By definition of attack, it holds that A′ attacks E′

on some a′ ∈ E′ and a′ ∈ ThR′(A′). Consider again three
cases.

(Case 1) a′ is of the form snd for some s ∈ L \ A: Since
s is not an assumption in D′, it holds that A′ derives s with
a rule r′ ∈ R′ s.t. head(r′) = s (the contrary of snd in
D′) and body(r′) ⊆ A′ implies body(r′) ⊆ A′ (no body
element can be derived). Since each rule is applicable in D,



there exists a tree-based argument α in D with cl(α) = s
and its top rule being r, the corresponding rule to r′ in D.
By construction, it holds that body(r) ∩B ̸= ∅ or E attacks
an assumption in body(r), because if snd ∈ E′, then s ∈ B.
If E does not attack any assumption in body(r) and body(r)
does not contain any element of B, it holds that one can
derive all body elements from E ∪ U in D. If there is a
body element s′ of body(r) in B, then E′ attacks A′: the
corresponding s′nd is in E′, and s′d in A′. If E attacks an
assumption in body(r), then there is a tree-based argument
starting from E that claims the contrary of this assumption.
Then E′ derives this contrary, as well (again the top rule of
the tree-based argument has a corresponding rule in D′, and
all its body elements are in E′). We arrive at a contradiction:
E′ does attack A′ in D′.

(Case 2) a′ is of the form sd for some s ∈ L \ A: This
implies that snd ∈ A′ (only this assumption attacks sd).
By construction of E′, it holds that s ∈ Th(E). This im-
plies that there is a tree-based argument A∗ ⊢ s for some
A∗ ⊆ E. Consider the top rule r of this tree-based ar-
gument. It holds that head(r) = s, and all elements of
body(r) are derivable from E. This implies that there is a
corresponding rule r′ ∈ R′ with the same head and body
element modified as stated in the construction of D′. It fol-
lows that body(r′) ⊆ E′ (all assumptions in body(r) are in
E′ and all remaining atoms are derivable from E, for which
we showed that the corresponding assumption is in E′). But
then s ∈ ThR′(E′) and snd = s, implying that E′ attacks
A′, again contradicting non-admissibility.

(Case 3) a′ ∈ A: Then there exists a rule r′ deriving from
A′ the contrary of a′, and a tree-based argument with corre-
sponding rule r as its top rule. If E′ does not attack A′ in
D′, it holds that from E′ one does not derive the contrary of
any assumption in A in body(r′) and for all sd in body(r′),
E′ does not contain snd. This implies that the contrary of a′
is derivable from E ∪U (no atom in body(r) is blocked or a
contrary derivable from E by construction of E′). But then
E is not admissible in D: a′ ∈ E′∩A = E, thus a′ ∈ E and
E ∪ U derives a′ in D, a contradiction to the presumption
that E is admissible.

Now consider some s ∈ L\A. It holds that s ∈ ThR(E)
iff there is a tree-based argument (A′ ⊢ s) in D′ with
A′ ⊆ E iff there is a rule r′ ∈ R′ with s = head(r′) and
body(r′) ⊆ E′ iff s ∈ ThR′(E′). This concludes the first
item to be proven.

(⇐) Now, assume that E′ ∈ adm(D′). Construct E =
E′ ∩ A. We first show that if sd ∈ E′, for some s ∈ L \ A,
then s ∈ ThR(E) (i.e., if sd is part of E′, then s is derivable
from E in D). This holds by Lemma 43. Now assume that
s ∈ ThR′(E′). Then there is a rule r′ ∈ R′ s.t. body(r′) ⊆
E′ and head(r′) = s. Let r be the corresponding rule in
D. It holds that E derives (or contains) all body elements
of r: if a body element is an assumption in A then both E
and E′ contain the assumption, if a body element x is not
an assumption in A then xd ∈ E′ and, by the lemma, we
infer that E derives x in D. Thus, if E′ derives s in D′ it
holds that E derives s in D (showing part of the claim in the
second item).

Now, suppose E /∈ cf (D). Then there is an a ∈ E and

a ∈ ThR(E). If a ∈ E, then E′ is not conflict-free in D′, a
contradiction. So a /∈ E and is not an assumption in A. Say
a = s for some s ∈ L\A. We show that E′ derives s: as s ∈
ThR(E), there is a tree-based argument A ⊢ s with A ⊆
E with top-rule r. Consider the corresponding rule r′ in
D′. By admissibility of E′ it holds that E′ attacks body(r′)
(to defend itself against the attack on a ∈ E′). Now, if
E′ attacks some b ∈ body(r′) ∩ A, then E′ is not conflict-
free, as body(r′) ∩ A ⊆ E′ (recall that r can contain as
assumptions only elements in E ⊆ E′). Thus E′ attacks
some xd ∈ body(r′). Thus E′ contains xnd. By Lemma 43,
it follows that x /∈ ThR(E), a contradiction (E does not
derive x in D).

Suppose that E /∈ adm(D). The proof proceeds analo-
gous to proving conflict-freeness of E: If E /∈ adm(D),
then there is an assumption set A ⊆ E ∪ U that attacks E.
Then A derives a contrary s of an assumption in E, thus
there is a tree-based argument A′ ⊢ s with A′ ⊆ A and top-
rule r in D. We consider the corresponding rule r′ in D′.
By admissibility of E′, it holds that E′ attacks body(r′) on
some a′ ∈ body(r′). This implies that E′ derives a′ in D′.
Consider two cases: a′ ∈ A or a′ /∈ A (is an original as-
sumption or not). In the first case, a′ = x and either x ∈ A
(then E directly attacks A, a contradiction) or x /∈ A. Then
there is a rule in D′ deriving x and all the body elements are
in E′. But then E derives x, as well (by Lemma 43 all non-
assumptions in the body are derivable by E; contradicting
again our presumption). If a′ is not in A, then a′ = xd for
some x ∈ L \ A and a′ = xnd. Then x /∈ ThR(E ∪ U),
implying that E attacks A′ (since A′ must contain some as-
sumption attacked by E).

For complete semantics, let σ = com . Assume that
E ∈ com(D) and construct E′ as above for the admissi-
ble case. By the results above, we find that E′ ∈ adm(D′)
(since E ∈ adm(D)). Suppose, for the sake of inferring a
contradiction, that E′ /∈ com(D′). That is, E′ is admissible
but not complete in D′. This implies that there is an assump-
tion set A′ ⊆ A′ such that whenever there is a B′ ⊆ A′

attacking A′ we find that E′ attacks B′, but A′ ⊈ E′ (E′ de-
fends A′ but does not contain A′). W.l.o.g. we can assume
that A′ = {a′} is a singleton (if E′ defends A′ then E′ de-
fends any a′ ∈ A′). As before, we consider three cases.

(Case 1) a′ is of the form sd for some s ∈ L \ A. Then
B = {snd} attacks a′ (and all sets attacking a′ contain snd
by construction). By assumption, E′ attacks B, and E′

derives s in D′ (by construction s is the contrary of snd).
Then there is a rule r′ ∈ R′ such that head(r′) = s and
body(r′) ⊆ E′. There is a corresponding rule r ∈ R in
D. By construction E ⊆ E′. For each non-assumption
x ∈ body(r) we find that xd ∈ E′. By construction it holds
that x ∈ ThR(E). Then s ∈ ThR(E). By construction,
s ∈ ThR(E) implies that sd ∈ E′, a contradiction.

(Case 2) a′ is of the form snd for some s ∈ L \ A.
Then snd is attacked by each r′ ∈ R′ with head(r′) = s.
Consequently, E′ attacks then each body(r′) ⊆ A′. If
s /∈ ThR(E ∪ U) we find that s ∈ B and, by construc-
tion, we have snd ∈ E′. Because, by assumption, we have
snd /∈ E′ it must be that s ∈ ThR(E ∪ U). Consider
X ⊆ E ∪ U such that there is a tree-based argument with



X ⊢ s in D. Let r be the topmost rule in this argument. We
have head(r) = s. By reasoning above, we find that for the
corresponding rule r′ ∈ R′ it holds that E′ attacks body(r′)
on some assumption b′ ∈ body(r′). This implies that b′ is
derivable from E′ in D′ via some rule in D′. Then E derives
b′, as well: for a corresponding rule all body elements are ei-
ther in E or derivable from E (by construction of E′). Then
E attacks b′, contradicting that X is not attacked by E in D.
If b′ /∈ A then b′ = yd for some y ∈ L \ A. By reasoning
above and E′ attacks body(r′) we find that ynd ∈ E′. By
construction we infer that y /∈ ThR(E ∪ U), a contradic-
tion (the body of r in the argument above is not derived via
E ∪ U , implying that the argument is not an argument).

(Case 3) a′ ∈ A. Then E′ attacks each body(r′) for r′ ∈
R′ whenever head(r′) = s = a′. By construction, also E
does not contain a′. Consider any A ⊢ s in D. The body of
rule r′ corresponding to the topmost rule in this tree-based
argument is attacked by E′. If attacked on an assumption in
A then E attacks A. Otherwise, E′ attacks on some xd via
containing xnd. By construction we find that x /∈ ThR(E ∪
U), and E attacks A.

For the other direction, assume that E′ ∈ com(D′) and
E /∈ com(D). By the results above, E ∈ adm(D). This
implies that there is some a ∈ A \ E s.t. whenever some
B ⊆ A attacks {a} we find that E attacks B.

Consider any B′ ⊆ A′ that attacks {a} in D′. Such a set
B′ exists, because there is some B ⊢ a in D, and the top
rule r. The corresponding top rule r′ with body(r′) = B′

and head(r′) = a. For any xd ∈ B′ we find that E′ does not
contain xnd (E′ does not attack B), implying, by Lemma 43,
that x ∈ ThR(E ∪ U). For any b ∈ B′ ∩ A it holds that E′

does not attack b and does not derive b in D′. This implies
that E does not derive b, either, since assuming otherwise,
by Lemma 43, we find that either b ∈ E′ (if b ∈ E) or
bd ∈ E′ and, because E′ is admissible, E′ derives b (to
defend against against bnd). This leads to a contradiction: E
does not attack a tree-based argument for a (E ∪ U derives
a in D).

By Lemma 43 we find that x ∈ ThR(E) implies xd ∈ E′.
Then x ∈ ThR′(E′) (otherwise xnd is not attacked by E′

and E′ not admissible). This implies the claim for complete
semantics.

Assume that E ∈ stb(D) and construct E′ as above for
admissible semantics. Suppose that E′ /∈ stb(D′). We find
that E′ is complete in D′ (by reasoning above). This implies
that there is some a′ ∈ A′ \E′ that E′ does not attack in D′.
As above, consider three cases.

(Case 1) a′ is of the form sd for some s ∈ L \ A. Then
E′ does not contain snd. Then, by construction, s /∈ B and
s ∈ ThR(E ∪ U). By assumption, sd /∈ E′, implying that
s /∈ ThR(E). But then there is a tree-based argument for
s containing assumptions from E ∪ U and at least one from
U that is not in E. This is a contradiction: U must be a
subset of E (stable assumption sets contain all unattacked
assumptions).

(Case 2) a′ is of the form snd for some s ∈ L \ A. Then
E′ does not contain sd, since {snd} attacks then E′ and E′

must attack back (by admissibility). The same reasoning as

for Case 1 applies.
(Case 3) a′ ∈ A. Then E attacks a′ in D. With similar

reasoning as in several cases above, we arrive at the fact that
E′ attacks a′, since some tree-based argument with base in
E must conclude a contrary of a′, and by construction of E′

we find that E′ derives the contrary, as well.
For the other direction, assume that E′ is stable in D′ and

E = E′ ∩ A is not stable in D (but complete, by reasoning
above). This means some a ∈ A \ E is not attacked by E.
It holds that a is attacked by E′ in D′. By Lemma 43, we
find that for some rule r′ that concludes the contrary of a, all
body elements are in E′ and that E derives the contrary, as
well.

Assume that E ∈ prf (D) and that E′, constructed as for
the admissible case, is not preferred in D′. By reasoning
above, we find that E′ is complete in D′. This implies that
there is some E′

1 ⊃ E′ and E′
1 is complete in D′. Then

E′
1 ∩ A is admissible in D. This implies that E′

1 \ E′ con-
tains only assumptions not in A (otherwise E would not be
preferred in D). If sd ∈ E′

1 \ E′, then s /∈ ThR(E) (by
construction) and, since E = E′

1 ∩A and due to Lemma 43,
we find that s ∈ ThR(E), a contradiction. If snd ∈ E′

1 \E′,
then, similarly, we conclude both s ∈ ThR(E ∪ U) and
s /∈ ThR(E ∪ U), by Lemma 43.

Assume that E′ ∈ prf (D′) and that E = E′ ∩ A is not
preferred in D (but complete, by statements above). Then
there is an E1 ⊃ E that is complete in D. Then E′

1 con-
structed as for the admissible case above from E1 is com-
plete in D′. Since there is some a ∈ E1 \ E we find that
a ∈ E′

1\E′, a contradiction to E′ being preferred in D′.

B.2 Omitted proofs of Section 5.3
Lemma 29. Let D be an ABAF and F = (A,R) the core of
D. Let x = (A, s) ∈ A be a redundant argument. Then for
each σ ∈ {adm, com, prf , stb} we have

{cl(E) | E ∈ σ(F )} = {cl(E) | E ∈ σ(F↓A\{x})}.

Proof. Let x = (A, s) and x∗ = (A∗, s) be the reason for x
to be redundant, i.e., A∗ ⊆ A. Suppose x ̸= x∗. Let us start
with admissible semantics.

(⊆) Suppose E ∈ adm(F ).
i) First assume x ∈ E. Then E also defends x∗ and hence

E∗ = E ∪ {x∗} \ {x} ∈ adm(F ) as well with cl(E) =
cl(E∗). Clearly, E∗ ∈ adm(F ↓A\{x}) so we found the
corresponding extension in F↓A\{x}.

ii) Now suppose x /∈ E. Then it also holds that E ∈
adm(F↓A\{x}).

In both cases i) and ii) we manage to keep an extension
with the same conclusions in F↓A\{x}.

(⇐) Let E ∈ adm(F↓A\{x}).
i) If x∗ /∈ E, then either E attacks x∗ or x∗ does not attack

E. Both cases would then also be true for x –if E attacks
x∗, then E attacks x as well– so E ∈ adm(F ) holds as well.

ii) if x∗ ∈ E, then E ∈ adm(F ) can be seen (x is cer-
tainly no threat to the extension).

Again, the accepted claims can be transitioned from
F↓A\{x} to F .

For the other semantics we reason analogously.



Proposition 30. Let D = (L,R,A, ) be an ABA frame-
work and F = (A,R) the core of D. If (A, s) ∈ A is not
redundant, then there is some tree-based argument t with
leaves(t) = A and cl(t) = s in D such that the derivation
depth of t is at most |L \ A|.

Proof. Suppose we are given a tree-based argument A ⊢ s
with depth greater than |L\A|+1. Since D is flat, only one
assumption can occur on each path in A ⊢ s. Hence in any
path whose length is greater than |L \ A|+ 1 there must be
some atom p ∈ L occurring twice. Hence A ⊢ s contains
two sub-arguments B ⊢ p and B′ ⊢ p where B ⊢ p is a
sub-argument of B′ ⊢ p; that is, we have B ⊆ B′.

By replacing B′ ⊢ p with B ⊢ p in the derivation tree
A ⊢ s we find a tree based argument

(
A \ (B′ \ B)

)
⊢ s.

If B ⊊ B′, then A ⊢ s is redundant; hence it must hold that
B = B′, and therefore the two core arguments (A, s) and
(A \ (B′ \B), s) coincide.

We proceed like this for each path in A ⊢ s that is longer
than |L \ A|+ 1. This way, we find an argument A∗ ⊢ s s.t.

• the tree-based argument A∗ ⊢ s has derivation depth at
most |L \ A|+ 1, and

• A = A∗, i.e., both tree-based arguments represent the
same core argument.

Lemma 33. Let D = (L,R,A, ) be an ABAF. If there
is a non-redundant argument t in D then there is also an
argument t′ in D◦ with leaves(t′) = leaves(t) and cl(t′) =
cl(t) . Vice versa, if t is an argument in D◦, then there is
also an argument t′ in D satisfying the same conditions.

Proof. (⇒) As in the construction of D◦ we let k = |L\A|.
We show the claim for each tree-based argument t (with

leaves A and root s) with derivation depth l ≤ k; thereby we
proceed per induction over l. More precisely, or inductive
hypothesis is as follows:

If t with leaves(t) = A and cl(t) = s has derivation
depth l in D, then tj with leaves leaves(tj) = A and
root cl(tj) = sj is constructible in D◦ for each l ≤
j ≤ k

Let l = 1. Hence in D we can derive s via a rule

r = s← p1, . . . , pn

s.t. p1, . . . , pn ∈ A. The same rule occurs in D◦ and we are
done.

Now suppose the claim holds for each l < k and consider
some argument t with

leaves(t) = A cl(t) = s

constructible in D with derivation depth l+1 ≤ k. Consider
the top-most rule r which is used to derive s. This rule is
of the form s ← p1, . . . , pn. By definition, there are sub-
arguments t1, . . . , tn with

cl(ti) = pi
⋃

leaves(ti) ∪ ({p1, . . . pn} ∩ A) = A

and again by definition their derivation depth at most l.

By the inductive hypothesis, in D◦ we have arguments tji
for each 1 ≤ i ≤ t and each l ≤ j ≤ k, i.e.,

cl(tji ) = pji

By construction of D◦ and due to the rule s ← p1, . . . , pt,
there is for each l ≤ j ≤ k a rule with head sj+1 and
{pj1, . . . p

j
t} as body. Using the sub-arguments tji we found

above, we can apply this rule in order to obtain the desired
argument tj+1 with leaves(tj+1) = A and cl(tj+1) = sj+1.

(⇐) This direction is straightforward: In a tree-based ar-
gument t in D◦ replace each rule applied rule

sj+1 ← pj1, . . . p
j
n

with the original one

s← p1, . . . pn

and suitably adjust the atoms, i.e., replace each sj+1 with s

and pji with pi. This way, a valid tree-based argument in D
is obtained.

Corollary 34. Let D = (L,R,A, ) be an ABA. Then D◦

is non-circular and satisfies σ(D) = σ(D◦) for each σ ∈
{adm, com, prf , grd , stb}.

Proof. Non-circularity is by construction. Due to Corol-
lary 46 D◦ contains all non-redundant arguments and ap-
plication of Lemma 29 yields σ(D) = σ(D◦).

C Omitted proofs of Section 6
Proposition 39. Credulous reasoning under semantics
σ ∈ {adm, com, prf , stb} is NP-complete for symmetric
ABAFs.

Proof. This is immediate from Reduction 37 since here we
construct a symmetric ABAF s.t. ϕ is credulously accepted
(under all mentioned semantics) iff the input CNF-formula
is satisfiable.

Proposition 40. Credulous reasoning under semantics σ ∈
{adm, com, prf , stb} is decidable in polynomial time in
cores of symmetric ABAs.

Proof. Constructing the cores results in AFs with |A|/2 many
even cycles of length 2 satisfying that all arguments with
claim s /∈ A have only incoming attacks. Credulous rea-
soning under admissibility in such AFs is decidable in time
polynomial in the number of arguments, since it suffices to
check if there exists an argument having the queried claim
that is not attacked by both arguments in a 2-cycle.

As before, the result transfers to complete and preferred
semantics.

For stable semantics, we first observe that all self-
attacking arguments in the corresponding AF (induced by
assumptions) are singletons. Indeed, given an assumption
a ∈ A with a = a, and consider an argument b ∈ A with
b = a. By symmetry, we have a = b hence b = a. To decide
credulous acceptability w.r.t. stable semantics we first check
whether a stable extension exists by checking whether a self-
attacking argument exists. If yes, we are done (the answer



is negative). If not, it holds that preferred and stable seman-
tics coincide. We proceed as before in the case of deciding
credulous acceptance for admissible semantics.

Theorem 41. Let σ ∈ {adm, com, prf , stb}. For each ABA
framework D = (L,R,A, ) and p ∈ L one can construct
an ABA framework D′ in polynomial time s.t. (1) x is cred-
ulously accepted in D′ iff x is credulously accepted in D
w.r.t. σ, and (2) credulous acceptance is in P under σ in the
corresponding AF F .

Proof. Let D = (L,R,A, ) be an ABA framework, and
a ∈ L. It holds that credulous reasoning under admissi-
ble, complete, preferred, and stable semantics in the con-
sidered ABA fragment is in NP (Bondarenko et al. 1997;
Dvořák and Dunne 2018). By NP-completeness of the
Boolean satisfiability problem, it follows that there is a
Boolean formula ϕ s.t. ϕ is satisfiable iff a is credulously ac-
cepted under admissibility in D. By applying Reduction 37
(see also proof of Theorem 22 for proving the reduction)
one can reduce ϕ, in polynomial time, to an ABA frame-
work D′ = (L′,R′,A′, ′) and a′ ∈ L′ s.t. ϕ is satisfiable
iff a′ is credulously accepted in D′. By construction, D′ is
symmetric. One can uniformly rename atoms in D′ s.t. a′ is
named a.

D Extending Corollary 34 to SCCs
(Correctness of Implementation)

We can extend Corollary 34 to strongly connected compo-
nents (SCCs) in the ABA framework as follows.

Definition 44. Let D = (L,R,A, ) be an ABA framework.
The dependency graph for D is defined as GD = (V,E)
where V = L and (p, q) ∈ E iff there is some rule r ∈ R
s.t. p ∈ body(r) and q = head(r). We say S ⊆ L is an SCC
iff S corresponds to some SCC in GD.

Observe that each assumption induces its own trivial SCC
since our ABA frameworks are flat. By definition, atoms in
each SCC are connected in the path of tree-derivations in the
following sense.

Lemma 45. Let D = (L,R,A, ) be an ABA framework
and S ⊆ L an SCC. Let p1, . . . , pn be a path in a tree-based
argument A ⊢ p. If pi ∈ S and pj ∈ S, then pl ∈ S for each
i ≤ l ≤ j.

Proof. By definition, pl is reachable from pi and since pi
is reachable form pj , it is reachable from pl as well. We
deduce pl ∈ S.

For each path P in a derivation tree, let us denote by P (S)
the (unique and connected) sub-path whose atoms occur in
S. We can extend the claim from Proposition 30 to each
single SCC (by the structure of SCCs with the same proof).

Corollary 46. Let D = (L,R,A, ) be an ABA framework
and F = (A,R) the core of D. If (A, s) ∈ A is not re-
dundant, then there is some tree-based argument A ⊢ s in
D such that for each path P in the derivation tree and each
SCC S, it holds that |P (S)| ≤ |S|.

If A ⊢ s satisfies the properties from Corollary 46 we say
A ⊢ s is SCC-wise non-redundant.

Let S be an SCC and let

R(S) = {r ∈ R | {head(r)} ∪ body(r) ⊆ S}
Rh(S) = {r ∈ R | head(r) ∈ S}

Definition 47. Let D = (L,R,A, ) be an ABA framework.
We define the non-circular ABA D◦ as follows. For each
SCC S and each rule r = s ← p1, . . . , pn in Rh(S) we
consider k = k(S) = |S| copies r1, . . . , rk where for each
1 ≤ j ≤ k:
• head(rj) = sj for j < k and head(rk) = s,
• if pi /∈ S, then pi ∈ body(rj),

• if pi ∈ S, then pj−1
i ∈ body(rj).

For notational convenience we let i) pj = p whenever p /∈ S
and ii) sk = s; hence we have
• head(rj) = sj ,
• body(rj) = {pj | p ∈ body(r)}
Then we let D◦ = (L◦,R◦,A, ◦) where

L◦ =
⋃

S∈SCCs(D)

k⋃
j=1

{sj | s ∈ L},

R◦ =
⋃

S∈SCCs(D)

k⋃
j=1

{rj | r ∈ R}

pi
◦
= pi

Lemma 48. Let D = (L,R,A, ) be an ABA framework
and k ≥ 1 an integer. If there is an SCC-wise non-redundant
argument t with leaves(t) = A and cl(t) = s in D, then
there is also an argument t′ in D◦ satisfying the same two
conditions. Vice versa, if t is an argument in D◦ with
leaves(t) = A and cl(t) = s , then there is also an ar-
gument t′ in D satisfying the same two conditions.

Proof. (⇒) Take s and suppose s ∈ S for some SCC. By
induction, we assume that claim holds for each parent SCC
of S. Suppose A∗ is the union of all the assumptions re-
quired to construct the sub-trees outside (i.e. before) S. Let
|S| = k.

Let us call the longest sub-path P (S) in S the derivation
depth of A ⊢ s. (the SCC is fixed for the rest of the proof).
For the given integer k we show the claim for each argument
A ⊢ s with derivation depth l ≤ k; thereby we proceed per
induction over l.

More precisely, or inductive hypothesis is as follows:

If t with leaves(t) = A and cl(t) = s has derivation
depth l in D, then tj with leaves(t) = A and cl(t) = sj

is constructible in D◦ for each l ≤ j ≤ k

Let l = 1. Hence in D we can derive s via a rule

r = s← p1, . . . , pn

s.t. p1, . . . , pn /∈ S. Due to the k copies we construct in D◦,
we get

rj = sj ← p1, . . . , pn



for each 1 ≤ j ≤ k, which proves the claim via inferring the
pi from the previous SCCs (induction).

Now suppose the claim holds for each l < k and consider
some argument t with leaves(t) = A and cl(t) = s in D
with derivation depth l + 1 ≤ k. Consider the top-most rule
r which is used to derive s. This rule is of the form

s← p1, . . . , pn.

By definition, there are sub-arguments t1, . . . , tn with
leaves(ti) = Ai and cl(ti) = pi and again by definition
their derivation depth at most l. Note that A = A1 ∪ . . . ∪
At ∪A∗ by construction of tree-based arguments.

By the inductive hypothesis, we have arguments tji with
leaves(tji ) = Ai and cl(tji ) = pji for each 1 ≤ i ≤ t and
each l ≤ j ≤ k. By construction of D◦ and due to the
rule s ← p1, . . . , pt, there is for each l ≤ j ≤ k a rule
with head sj+1 and {pj1, . . . p

j
t} as body. Using the sub-

arguments tj we found above, we can apply this rule in order
to obtain the desired argument tj+1 with leaves(tj+1) = A
and cl(t) = sj+1.

(⇐) Again this direction is much easier: In a tree-based
argument t in D◦ replace each rule applied rule

sj+1 ← pj1, . . . p
j
n

with the original one

s← p1, . . . pn

and suitably adjust the atoms, i.e., replace each sj+1 with s

and pji with pi. This way, a valid tree-based argument in D
is obtained.

Corollary 49. Let D = (L,R,A, ) be an ABA. Then D◦

is non-circular and satisfies σ(D) = σ(D◦) for each σ ∈
{adm, com, prf , grd , stb}.

Proof. Non-circularity is by construction. Due to Corol-
lary 46 D◦ contains all non-redundant arguments and ap-
plication of Lemma 29 yields σ(D) = σ(D◦).
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